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ABSTRACT

In this paper we investigate the growth rates of G6rtler vortices in a compressible flow

in the inviscid limit of large G6rtler number. Numerical solutions are obtained for 0(1)

wavenumbers. The further limits of (i) large Mach number and (ii) large wavenumber with

0(1) Mach number are considered. We show that two different types of disturbance modes can

appear in this problem. The first is a wall layer mode, so named as it has its eigenfunctions

trapped in a thin layer near the wall. The other mode we investigate is confined to a thin

layer away from the wall and termed a trapped layer mode for large wavenumbers and an

adjustment layer mode for large Mach numbers, since then this mode has its eigenfunctions

concentrated in the temperature adjustment layer. We are able to investigate the near

crossing of the modes which occurs in each of the limits mentioned.

'This research was supported by the National Aeronautics and Space Administration under NASA Con-
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1. Introduction

Our aim in this paper is to investigate the growth rates of Grtler vortices for a com-

pressible inviscid flow over an infinite cylinder in the limits of high Mach number and high

wavenumber. This investigation is motivated by recent interest in the development of hyper-

sonic aircraft which might well be capable of reaching speeds in the order of 20 - 25 Mach.

Real gas effects will certainly come into play at these speeds but for simplicity's sake we have

not taken them into account in this paper. We have also assumed that Chapman's viscosity

law holds for this fluid.

The most obvious difference between G6rtler vortices in incompressible and hypersonic

flows is that the presence of a temperature adjustment layer, where the temperature decays

rapidly to its free stream value, at the edge of the boundary layer enables hypersonic G6rtler

vortices to be concentrated well away from the wall. In the incompressible case, we know,

from the work of Hall (1982a,b, 1983), arn Denier, Hall, and Seddougui (1991), that unstable

G6rtler vortices are not localized within the boundary layer for order one G6rtler numbers.

For higher G6rtier numbers the most dangerous G6rtler vortices have wavelengths small

compared to the boundary layer thickness and are trapped near the wall. Not surprisingly

this situation does not change significantly for order one Mach numbers and this nonparallel

problem has been discussed by Wadey (1990) and Spaii and Malik (1989). In the latter

two papers, the nonparallel equations were solved numerically following the approach of Hall

(1983) and the main result obtained was that the growth rate of a G6rtler vortex is a function

of its upstream history. The numerical calculations of Wadey (1990) do suggest that as the

Mach number increases the unstable G6rtler vortices locate themselves towards the edge of

the boundary layer. This view is supported by Hall and Fu (1989) whose main result was that

the logarithmically small temperature adjustment layer at the edge of a hypersonic boundary

layer can support G6rtler vortices and the most dangerous wavelengths of the vortices are

comparable with the thickness of this layer. Fu, Hall, and Blackaby (1990) have considered

the influence of real gas effects and Sutherland's viscosity law on the G6rtler instability in

hypersonic flows.

This present paper is restricted to linear regimes of vortex growth, for a detailed account

of nonlinear regimes the reader is referred to the review article by Hall (1990). It is also

worth noting that hypersonic boundary layers are susceptible to instabilities other than

those caused by streamline curvature, such as Tollmien-Schlichting wave instabilities which

have been discussed by Cowley and Hall (1990) and Smith and Brown (1990). Clearly any

nonlinear investigation of G6rtler vortices at hypersonic speeds must allow for the possible

interaction of the vortices and these other types of instabilities.

The present paper is concerned with the inviscid limit of G6rtler vortices in a compressible



boundary layer. We find that two distinct modes exist and we are able to describe them

in the separate limits of large free-stream Mach number and large disturbance wavenumber

(although for the case of large free-stream Mach number the disturbance wavenumber will

also be large). The first mode also exists in an incompressible boundary layer and is termed

a wall layer mode here since its eigenfunctions are concentrated in a thin layer near to the

wall. For the incomprec ible case, in the limit of large wavenumber, this mode is dcscribed by

Denier, Hall, and Seddougui (1991). The second mode has its eigenfunctions concentrated in

a thin layer away from the wall and therefore is referred to as a trapped layer mode in the large

wavenumber limit. In the hypersonic limit this layer is precisely the temperature adjustment

layer, a logarithmic layer where the basic temperature changes ranidlv from its O( 1L
2 ) Vwhio

close to the wall to its 0(1) value at the edge of the boundary layer. Consequently, in the

hypersonic limit this mode is termed an adjustment layer mode.

The numerical solution of the equations governing the stability of G6rtler vortices in the

inviscid limit, discussed in Section 2, show that the growth rates of the infinity of solutions

of the two modes described above, as functions of the disturbance wavenumber, appear

to intersect. A similar near-crossing of modes is evident in the numerical results of Ma:k

(1987) in the form of kinks in the neutral curves of the generalized inflection point modes

for compressible flow over a flat plate. Asymptotic solutions for the infinity of solutions of

the compressible Rayleigh equation, termed acoustic modes, in the hypersonic limit have

been given by Cowley and Hall (1990), while the so-called, single, vorticity mode for large

values of the Mach number has been discussed by Smith and Brown (1990). Cewley and

Hall (1990) postulated that the near-crossing of the neutral curves could be described by

a WKB description of the acoustic modes and the vorticity mode. This is precisely the

method employed by Smith and Brown (1990) in their investigation of inviscid modes of

instability for large Mach number flows. The results of Smith and Brown (1990) show that

the discontinuous vorticity mode becomes continuous in the limit of large Mach number.

Additionally, they ascertain that for large Mach numbers the acoustic and vorticity modes

are separated by an exponentially small amount as was proposed by Cowley and Hall (1990).

The objective of the present paper is to describe the wall layer modes and trapped layer

modes present for inviscid G6rtler vortices and to investigate their near-crossing which exists

as outlined above. To this aim we follow the ideas of Cowley and Hall (1990) and Smith and

Brown (1990) and consider a WKB analysis of the modes of interest.

The layout of this paper is as follows. In Section 2 we derive the equation governing the

structure of inviscid GMrtler vortices in a compressible boundary layer and then discuss some

numerical results of this equation. In Section 3 we take a closer look at, the wall layer modes,

those with their eigenfunctions trapped near the iall, in th, hypersonic linit. \Ve follow
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this by looking at the adjustment layer niodes, those whose eigenfunctions are concentrated

in the temperature adjustment layer, in the hypersonic limit in Section 4. Then in Section

5 we look at the wall layer modes for the high wavenumber limit. In Section 6 we consider

the trapped layer modes for the high wavenumber limit, these are the equivalent of the

adjustment layer modes for the hypersonic limit. We then consider the near crossing of the

different types of modes for both limits in Section 7 before finally summarizing our results

in Section 8.

2. Formulation

Our aim in this section is to obtain the equation which determines the structure of a

G6rtler vortex in a compressible boundary layer. The boundary layer considered is that of

a flow over the cylinder y* = 0. -00 < z* < oo so that the z*-axis is a generator of the

cylinder and y* measures the distance normal to the surface. The x*-coordinate measures

distance along the curved surface, which is supposed to have variable curvature (1/m)x(x*/l)

where m and I are length scales. The Reynolds number R, Ghrtler number G and curvature

parameter 6* are defined by

R U11, (2.1a)
V

2R2 (2.1b)

5*= -, m(2.1c)

where U,, is a typical flow velocity in the streamwise direction and v is the kinematic viscosity

of the fluid. The Reynolds number is assumed to be large, whilst 6* is sufficiently small so

that as 6* -- 0 the parameter G is fixed and of order one. We take the basic two-dimensional

boundary layer to be of the form

_ Uo[U(X, Y), R-U(X, Y),0][1 + O(R-)], (2.2)

where x* y'R

X =- Y -* (2.3)

We chose to look at a Blasius boundary layer by putting U = f'(1) where f satisfies

2f" + ff" 0, f(0)= fl(0)= 0, f'(oo) = 1, (2.4)

and q1 is given by

= /Xl, (2.5)
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where Y* is the Howarth-Dorodnitsyn variable

Y* = dY, (2.6)

and we have taken a model fluid (i.e., the Prandtl number equal to one and Chapman's vis-

cosity law with C equal to one). For the case of a thermally insulating wall, the temperature

is given by

T = - 1)M.(1 - f'), (2.7)

where Mc, is the Mach number of the free stream and ^I is the ratio of the specific heats and

will be taken to be 1.4 when it is needed numerically. Defining Z by

z z*Rr 
28S1

we perturb (2.2) by writing
u_ = U[i + 6U](X, Y)Ez, VR- + 6R-V(X,1Y)E 1, WRW(X, Y)E,][1 + O(R-1)], (2.9)

where E1 = exp(iaZ) and 6 < 1 (see Hall (1982a) for further discussion of the above

scalings). We similarly perturb the basic pressure, T, by putting

p = p 6R- P(X, Y)EI, (2.10)

and the basic temperature by

T To(T + 6T(X; Y)EI), (2.11)

where T is the free stream temperature. If we then introduce a growth rate /3 and the

scalings

U(X,Y) = U(Y)E 2, (2.12a)

f/(X,Y) = GIV(Y)E 2, (2.12b)

W(X, Y) = G W(Y)E 2, (2.12c)

!(X, Y) T(Y)E 2 , (2.12d)

P(X,Y) = GP(Y)E 2, (2.12e)

where

E2= exp {f Gl-(X)dX}, (2.12f)

and insert (2.9) - (2.11) into the governing equations and take the inviscid limit G -* 0 we

get
PO3 a + T T = 0, (2.13a)
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OU + V 0, (2.13b)
OY

+ KT2(2.13c)

P U-0 11-- = -iaP, (2.13d)

T

aT
•T + V- . Y 0, (2.13e)

where K is a measure of the curvature. Taking p 1 we find from (2.13) that

[Ka2 (- - - a~ 0(~ )& (0' 0 (2.14)
2 [2;a aYT - \ T OY + - T aYj

If we now change variables to 77, take for simplicity's sake a value of X = 1 and put

= 1 , (2.15)

in order to eliminate K from the equation we get after some rearranging

F2T'1[1- "' 2T /I" a2]~ " 1
V+ V/ T' 2 + 2  f '"/) + a2T 7 - 0, (2.16)

with the boundary conditions

V(0) = 0, (2.17a)

V_ e-a" as r-+ o, (2.17b)

V' ,, -ae - 1 as i -+ c. (2.17c)

Since (2.16) corresponds to an inviscid limit we cannot satisfy the viscous boundary condition

V' = 0 at 77 = 0. Equation (2.16) is the compressible generalization of equation (5.8) in

Denier, Hall, and Seddougui (1991). Similarly to Denier, Hall, and Seddougui (1991) it can

be seen that (2.16) and (2.17) have the exact solution

V = f ' e a' , / 3 = a ( 2 . S )

which is valid for all a and M0.,. However, in order to get other solutions it is necessary to

solve this eigenvalue problem numerically.

We solved (2.16) and (2.17) for a variety of Mach numbers. Figure 1 shows the first

eleven modes for a Mach number of 2. These modes are not markedly different in shape

from those of the form /32 = constant x a obtained in the incompressible case (again, see

Denier, Hall, and Seddougui (1991)). Figure 2 shows solutions for a Mach number of 3.25

and we can see that there are now significant differences compared with the incornpr.-s9b,



case. However, all of the modes continue to rise as a -+ oc and are of the wall layer type,

so-called because the eigenfunction is concentrated in a layer near the wall. In Figure 3

where the Mach number is now 5, we can clearly see the appearance of two adjustment layer

modes which tend to a constant value of /3 as a -+ oo. We call these modes adjustment

layer modes because their eigenfunctions are concentrated in the temperature adjustment

layer in the hypersonic limit. (They will be referred to as trapped layer modes for 0(1) Mach

numbers.) Each of the modes in this figure (apart from the exact solution) contributes a

portion to the adjustment layer modes as they pass through the relevant positions and in

doing so they change up to the next higher wall layer mode. If we follow the fourth mode

on Figure 3 as a increases we can look at its eigenfunction and see how it changes. Initially

when a = 0.2 we can see in Figure 4a that the eigenfunction is a widened version of the

eigenfunction of the third wall layer mode with an additional lower peak in the temperature

adjustment layer. In Figure 4b with a = 1.1 the mode is now in its flat section and the

eigenfunction is indeed that of an adjustment layer mode. By the time a = 1.25, Figure 4c

shows that the peak in the temperature adjustment layer has split into two. In Figure 4d we

have a = 1.35 and the left-hand peak of these twin peaks is moving into the wall layer whilst

the right-hand peak is decaying, showing the process by which the modes change up to the

next higher wall layer mode. To complete the sequence, Figure 4e shows the eigenfunction

for a = 2.5 and it turns out to be the eigenfunction of the fourth wall layer mode.

Figure 5 shows solutions for a Mach number of 8 and we can see the first three adjustment

layer modes. As the Mach number and wavenumber increase, the modes come very close to

intersecting (although they do not as we shall show in Section 7) and this means we have

to take prohibitively small steps in a in order to follow a particular mode numerically. As a

result, some wall layer type portions of modes have been omitted from Figure 5.

3. The Wall Layer Modes for M, 1

Taking Equation (2.16) and using the scalings

a d + (3.1)
M£

and

an M- ""(3.2)
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allows us to look at the wall layer modes for Moi >. I, for which

(-4f'f") 1 - I?.2(_y- 1)2(1 f, 2 2  f,

[(I -f 2)J K 4
(3.3)

4f" 2  +1 ~ ~ f,\~f,'1-
(1 -f,2) 2 32 -) I .

When - > 1 we can get an approximation to the wall layer modes by the application of the

WKB method. There are three regions to consider as we have a turning point associated

with the WKB expansion. Close to the wall the transformation

V(r7) = S(71)(1 - f, 2), (3.4)

allows us to write (3.3) as

S"(1- f") - 2S(f'f" + f112 + f'f,,) + S(1 _ f/2) [(_12(_ _ 1)2(1 _ f'2)2

fil 4f/12  + I1 )2 ( f /2 ) ] + .51
fl (1- f/2)) 2 -( -- 1) . (1-f)±ff j 0

which for d > 1 gives the WKB approximation

S" -+ -2S [-(3 - 1)2 (1 - ' 2 ) + I (-1Y - f/2) + f'f, (3.

and we write this as

S" + -22SH(q,-f) = 0, (3.7)

where
H - - 1)2(l -j '2) + 2 1) f ( c/2 r ' "

4 2 32 ft -T

H > 0 for 0 < 71 < 77 and 7h is the turning point. In order to satisfy the boundary condition

(2.17a) we must have S(0) = 0 since (1 - f') $ 0 for r = 0. The solution of (3.7) which

satisfies S(0) = 0 is
A

07 sin(Ji (I(rll))'drh), (3.8)

where A is a constant and so V is given by

V - A(1-f')sin(dj (H(ij))dri). (3.9)Hi 1

In the region of the turning point, the equation to be solved is the Airy equation

V"f - 7 - 71,)V = 0, (3.10)
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where a~ is positive and given by

The required solution of (3.10) which decays exponentially as I/-+ cc is

where 13 is a constant and Ai denotes the Airy function (see A brainiowitz anid St eguir (196-1)).

If we denote tlhe argumient of the Airy function by t then since for- t < -1

S 2

we have that for t ~< -1

B__ I si 1 11 (2:3,12)

Now letting q- ti 39 ie

A(1 I f'(Tlt)sn JI(i))rr.(.5

Matching amiplitudes and phases betweein (:3.1 4) arid (:3.15) im1plies, since we allow B to be

positive or negrative in (3.12) and hence phIase~s miay be (it her inl phase or radians out Of

phase, that

p11- /,;))~~ B. (:3.16)
(76

and

4~ (3.17)

whle re

JO
arid 71 is a large integer-.

In Figure 6 we have p~lotted the wvall laver miodes. with equation (3.17) for n running

fromn one through seven and a Mlach rtnmber of 8, and thenr sliperiniposedl thein on Figure 5.

Wve canl see, even for a mnoderate Mach numnber andl small values of n. that eqluat ion (3.17)

gives a good alpproxiniation to the wall layer iodles.

4. The Adjustment Layer Modes for Al, >I

For the adj ustmment layer mrodes, the appIrop~riate equation below the turning point is

(3.9). Ilow'"r.r (3.12), the solution of the Airy equation (:3.10), mnust now be renlaced by

V = Ein4 AIMl + F-rII i(t),(41
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%%here di' ~ F are c'onst ants since I ' wI II be I aiite I n t lIeIIc tei ierat lire adjust I iwit l ayer a Way

frorni the wvall and so we are nIo longer seeking a soluition which decayvs ex poliei jail vheui

the turning point. Thus for t ~< -1 . since

13 t) 2 ~ tK -) 4' cos.)

NvC have

where tan 0- E/F. Matching (3.9) and (4.:3) gives

and

3j-

where it is again a large Integer.

W\hen t >~ I wve have

.lj~t 9 . :3

so (..1) gives for t >~ 1 that

and this has to be inat ched wvithi the solut ion ab~ove the turning point but belowv the temn-

perat ure ad~ ustmnent layer. InI this region VIs- gi veii bY

O(- II-f) 1,*

%%,here weC have oiily ret ainedI thle exIponerIt ially large tem mn.iult iplied bYv a conslant co. InI

the \ K 13 approximation. 'Matching b~et ween (.)and (1.9) g1iVes

b -+ F log I')+ (4.10)

and b 'is a coinstant andl



In this region therefore h ez
f 1- 

(4.13)

where h is a constant so

T. 1 + ( - l)h&, (-14)

and hence

-H ( - 1)2 '.2c2  _ - I) h,-l (C1.15)
Al4  -2 J1

Therefore if we take z > 1 and insert these expansions into (.1.9) we get that the behavior
-tf V as the temperature adjustment layer is entered from below is

2coh- _" (1.16)

where

J 2JK 1)2(1 f2 -/3
2) + dtp (4.17)

In the temperature adjustment layer we make the transformation (4.11) it (2.16) arid

after scaling a and 3 by writing

a + .. (. Sa)

)1'127 + ..., (-4.1Sb)

we get, retaining the leading order terms for Ai > 1, that

d~V7 d 1 (Iy V 1)hez\ + 1 i2 ) \~'2 1 I( u/19czN1d:-- (I +- (-y(- -)hT -  +1+( - )hc ): + 20.
dz2  dz l- y-1) hez) 1+Vt 

1 rY-1)I +2 \\ 2,
(4i.19)

From (4.16) we can see that as z -oco the behavior of V will be a multiple of
1_ -t

sic 2 , (4.20)

where

s - 1)hc". (.1.21)

Letting z -+ -oc in (4.19) we can easily see that

e z ,11.22)

since we require V to decay above the temperature adjustment layer. Using (4.20) and (4.22)

as boundary conditions we solved (4.19) numerically. In Figure 7 we have plotted the first,

three adjustment layer modes given by (4.19) for a Mach number of 8 and superimposed
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this onto Figure 5. We can see that (4.19) is giving a good approximation to the adjustment

layer modes.

The numerical results we gained in Section 2 seemed to suggest the existence of a critical

Mach number, above which the adjustment layer modes come into play and below which

they do not exist, and we shall discuss this furthe," in Section 6.

5. The Wall Layer Modes for Moo ,,- 0(1)

The modes located near the wall for M, - 0(1) will be described by Equation (2.16).

For large a we are able to obtain an approximation to them from the WKB solution in a

similar way to the solution obtained in Section 3 in the hypersonic limit.

If we write

03 =3 a-, (5.1)

then there is no turning point in the WKB solution. However, the solution obtained does

breakdown when q /- 0(a - 1) as a consequence of f' - aq for q < 1. Thus, in this region we

write

= aTwq, (5.2)

where T, is the value of T(,q) atq = 0. (Vhen the flow is adiabatic, i.e., the wall is thermally

insulating, from (2.7), Tw = 1 + ('y - 1)M,/2.) Substituting (5.1) and (5.2) into (2.16) we

find that V satisfies the following equation:

2 d 2V (5.3)

This is the equation satisfied by V in the corresponding incompressible problem described

by Denier, Hall, and Seddougui (1991). It is a form of Whittaker's equation and the solution

for V satisfying the boundary conditions

V=0at ?P=0,

and

V -* 0 as oo,

may be given in terms of Kummer functions (see Abramowitz and Stegun 1964). Hence, we

find that the unstable eigenvalues for the present case of a compressible fluid will be the same

as those for the incompressible problem described by Denier, Hall, and Seddougui (1991).

These are
1 1....................

11



Thus from (5.1) the growth rates for the wall layer modes are given by

2 a (5.4)
2n'

where n = 1,2,3, ... We note that the first solution corresponds to the exact solution

described by (2.18). Moreover, the eigenvalues are independent of M, and ....

The approFpiate solution of (5.3) is

V(7P) = bie-¢'M(1 - n,2,20), (5.5)

where M(a, b, z) is Kummer's function and bl is a constant. AI(1 - n, 2,24) is a polynomial

of degree (n - 1) in 24. The behavior of V for large V) is

9n-1

V(O) _, bl(-1)n-  n-e- + ... . (5.6)

Then from (2.16), we find that the WKB solution in the region above the wall layer which

matches with (5.6) as -- 0 is given by

V(q) = ci(T(7l))(-n)/2(f'(r,))n exp[-aT( q)dql], (5.7)

where cl is a constant. Since

2 4

4f(7) , aq - -?7 ... , (5.8)

for < 1, where a = 0.332..., ci is given by

n-!
c, =a aT(3 -)/a-'(1'- 2

1 
hi. (5.9)

In Figure 8 %e show the growth rate given by (5.4) as a function of a for Al, = 5 for

the first nine wall modes. These solutions are superimposed on the corresponding numerical

solutions from Section 2. We see that for large a the asymptotic results are very good

approximations to the numerical solutions.

In order to discuss the near-linking of these wall layer modes and the trapped layer modes

described in the next section, we must consider the solution of the wall layer modes for large

mode number. This is apparent from Figure 3 since the growth rates of the wall layer modes

will not be close to those of the trapped layer modes for a > 1 unless n is large.

Thus for n >> 1 we write the wavenumber as

a = a 0n + al ± ... , (5.10)

12



where a0 and a, are constants. Then from (5.4) the growth rate of the wall layer modes for

large n is given by
L2= a+ a,
i +  1 1 +a ... (5.11)
22 Sra 2n

From (5.5) the solution for V in the wall layer for large n is

V(4 =b 2 4 4 2 ,2, 2
V(V)) = bi2w-cos (8-V)n2 - -4. (5.12)

As 0 --4 0 the solution (5.12) matches onto tile solution in a thin layer next to the wall of

thickness 0(n- 1) where V satisfies

d 2V 2V/d2 V = o, (5.13)

and " nV,. To satisfy the boundary condition at the wall and to match with (5.12) as

- Zo we find that

V,-eI(C-4 2 +...) for(<1,

and

V b,2 n- Cos (82 -4 as oc,
where e1 is a constant.

For large values of V) the solution given by (5.12) is valid only for 4, < 2n and matches
onto the solution above the wall layer for large n when 4, is large and , < 2n, We find that
the WKB solution in the region above the wall layer which matches with (5.12) as 7 0 is

given by

V(77 ) = g( Q (7))-T(±)cos((na°+±a) Q) h-- Io-]- (-Q) d 71-0 1 ),
0 2aO0 ((-Q) 2

(5.14)

where g, is a constant and 01 = 3ir/4. The function Q(7) is defined by

Q(77) =(T(77))- - 2 (T(71)f"(,) T' 0 )- , (5.15)

and the solution (5.14) is valid for 0 < 7 < r where q* is the first zero of Q and Q < 0 for
,q < '7". A more thorough discussion of the function Q is given in the next section.

In the region close to 77 = q*, from (2.16) V satisfies

V" - T(q7 - q*)a2n2 V = 0, (5.16)

where T = Q'(ri*) > 0. Since we require V to decay as 7- oc the appropriate solution of

(5.16) is

V = ko7r Ai(r), (5.17)

13



where k0 is a constant and r = (agn2r) (7 - 7r*). From the behavior of the Airy function Ai
given by (3.13) for r --- -oo we have from (5.17) that

V-kolrl-t cos (3Irl 2 4 (5.18)

as r -+ -oc. Then matching the amplitudes and phases of (5.14) as y* 1* with (5.18) gives

r 4 (aon2T) lT(r,)g 12 (5.19a)

and

(nao + ai)I, - a (1  + 12) - = (5.19b)

where the integrals I, and 12 are defined by

I= j(-Q)drh, (5.20a)

and

12 = I T T 2(-Q)-d"71 . (5.20b)

The expression (5.19b) determines a,, i.e.,

01 +4-naoi1
a, - 4/1 (5.21)

6. The Trapped Layer Mode for Moo ,- 0(1)

For Mo, '- 0(1) this mode is concentrated away from the wall and is the equivalent of

the temperature adjustment layer made for Moo > 1 described in Section 4. For a > 1 this
mode can be regarded as a virtually continuous function of a. In Section 7.2, we discuss the

near-linking of this mode with the wall layer solution for large n. Anticipating this we define

a by (5.10) and consider the solution of the trapped layer mode for n > 1. To obtain the

solution for large a from the following results we set a, = 0 and aon a. For large n we

write (2.16) in the form

V" - 2=V' - a2n 2QV = 0, (6.1)
T0

where

Q() = T2[1 (f22)] (6.2)

Then this mode is concentrated in the region where

'52 =''2 = t -' 2T 2  '(6.3)
Tf' 2T

14



and 03 is a maximum at r/= i/. Therefore, from (6.2) we have

Q(O) = Q'( ) = 0 and Q"(4) > 0. (6.4)

Thus when a0 = 2/302 the function Q defined by (6.2) is also that defined by (5.15).

In Figure 9 we plot Q(7)/T 2 from (6.2) for MA. = 5 for a range of values of /3. We choose

to show Q/T 2 "ather than Q since (T(77))2 given by (2.7) is large for small values of 'q and

decays exponentially to the free stream value of 1 as 7 increases. We see from Figure 9 that

Q(rj) --+ -co as 17 - 0+. For certain values of /3 the function Q(r) has three zeros. For a

particular value of /3 the second and third zeros coincide in a turning point. This position of

77 is the location of the trapped layer modes '] q , for large a. The sequence of modes will

be described by corrections to (6.3).

However, these trapped modes will not exist for values of 11, below a critical value. We

can see this if we look at the plots of Q(r7)/T 2 for various values of /3 for Al, = 3 shown in

Figure 10. It is apparent from this figure that Q(7) only has one zero for any value of 3 and

no local minimum for Mc, = 3. For the Chapman constant C = 1 and an adiabatic fluid the

critical value of AMI is found to be AMo = Al = 3.564. Thus, for A, < M, the function Q

will not have a local minimum and there is no solution described by (6.3) and (6.4). This

explains why the discontinuous modes do not appear in the computational results for small

Mach numbers. We note that there exists a critical value of the free stream Mach number

when C $ 1 or Prandtl number $ 1 and also for the case of an isothermal flow where the

temperature of the wall is maintained at a constant value.

Thus, from (6.3) /3 is a constant to first order for the trapped modes and moreover, the

same constant for each mode. The correction to /3 will describe the distinct modes. In order

to determine the eigenfunction in this region it is necessary to determine the correction to

/. In the trapped layer

= a2n3(1 - r), (6.5)

where i) 0(1). Write

= Oo + ao'n-'01 +., (6.6)

and substitute (6.5) and (6.6) into (6.1). Equating coefficients of the largest terms, which

are of O(agn2), shows that /30 is indeed defined by (6.3) and (6.4).

Figures 11 and 12 show the solutions of (6.3) and (6.4) for an adiabatic fluid and also for

the case of an isothermal fluid where the temperature of the wall is maintained at a constant

value. In this case for Chapman constant C = 1 and a Prandtl number of unity, the basic

temperature is given by

T(q) = 1 + -M -1M (f'( 17 ) - f'(rl))2) + (Tw - 1)(1 - f'(r7)), (6.7)

2
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where T,, is the nondimensional temperature of the wall. Note that if T, = 1 + (M - 1)M/2

then (6.7) reduces to the expression (2.7) for an adiabatic flow.

Figure 11 shows the value of I/ for the trapped modes as a function of Mach number
for an adiabatic wall and an isothermal wall with T, = 0.5, 1, 2, 4, 8. We see that i

moves towards the free stream as M,, increases. For large values of Mo, the analysis must

be replaced with that described in Section 4 so will correspond to the position of the
temperature adjustment layer given by (4.11) and the modes will be as described in Section

4. This is consistent with (4.11) since we see that the position of the temperature adjustment

layer increases as _IM increases.

Figure 12 shows the corresponding values of I00 for the trapped modes as a function of

Mach number. We see for the adiabatic case and for the isothermal case with T,, < 8 that the
value of 3o decreases initially as M,, increases but then increases as Mo increases further.

The 0(aon) terms in (6.1) give the following equation for V:

2V - (T0, (6.8)
d 2  2 0

where Q"() is defined for i = /30. The solution of (6.8) satisfying the boundary conditions

V -- 0 as I )1 --+ oc, (6.9)

is an eigenvalue problem for /31. We find that the solution of (6.8) and (6.9) is

V( d dU(A, (6.10)

where d, is a constant,

= (2Q"(0)) h(6.11)

A= (, (6.12)

and U(A, V) is the Parabolic cylinder function (see Abramowitz and Stegun 1964). Now

U(A, q) grows exponentially as --* -oo unless
1 3 5

A 2' 3 - (6.13)

Then the behavior of U(A,Th) as V -- when A is given by (6.13) is

(A (6.14)

and
L -2 "

U(A,) e- /' (6.15)

16



as T -* +o.

From (6.12) and (6.13) we can evaluate /3, for a fixed Mach number for a particular

trapped mode. Figure 13 shows the growth rate from (6.6) for M" = 5 for the first three

trapped modes as a function of a. In order to see the comparison between the numerical

solution of the discontinuous mode described in Section 2, in Figure 13 only the discontinuous

solutions are shown for large a and 03 below a certain value. We see from Figure 13 that for

the first trapped layer mode the asymptotic solution is a very good agreement even for 0(1)

values of a. For successive modes we still have good agreement but for larger values of a.

Below q = , but above 71 = 77* where Q(,q*) = 0, Q(71) will be positive. The WKB

solution of (2.16) in the region 7r* < r/< ) is

V()= eo(Q(q))-T(q) exp aon + a, - ) Q 'drQ 1] , (6.16)

where e0 is a constant. Now as 77-

Q d 7 , Qldrl - aoan - ' (6.17)*4'

and
' -1 /31 .2'

j (aqoj) T Q -d 77 1 - A ln((2Q"())- -j), (6.18)

where A satisfies (6.12). Thus, from (6.16) as q7 - i) for large n

V 2 aon (Q"(f))-T(ij)eof~y:A-(2Q") 4 exp [-- + aon + al,-- 13 + 14 ,(6.19)

where 13 and 14 are integrals defined by

1 , = .QTdrl, (6.20a)

and

14 0 .- aon)i T 2Q-d d77. (6.20b)

Then (6.19) matches with (6.10) as ij -- -0c if

[I /3 1
28ao n (Q ()) T(7)(2Q")Aeo exp aon + a, - 13+ 14] =d(-1) . (6.21)

Close to the position r7 = 77* V satisfies (5.16). We do not require V to decay above this

region so the solution for V is

V = kor 2 Ai(r) + loir 2Bi(r), (6.22)
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where k0 and 10 are constants.

From (4.8) the behavior of V as r ---+ 0 is

V lor-4 exp (r . (6.23)

The solution (6.16) must match with (6.23) as 7 - r. Then lo is given by

lo = e0 r- (a n2r) LT(77*). (6.24)

From (6.22) as r -* -0o

(k0 + l r)41r cos ( Ir' + 4-02 ,

where tan 02 = ko/lo. In the region below 71 = 7}* V is given by (5.14), i.e., the solution above

the wall layer for n > 1. Thus matching the solution (5.14) as - i 77* with (6.25) gives

instead of (5.19)

r-4(agn2r)iT(*)gl = :(ko + 0 (6.26)

and
a,(nao + al)Ii - 2-(II + 12) - 01 = 02 -- (6.27)

2aO 4

7. The Near Crossing of the Wall Layer and Adjustment Layer Modes

We see from the numerical results of Section 2 that for values of the free stream Mach

number above a critical 0(1) value the wall layer modes and the adjustment layer modes

become very close. This occurs for 0(1) values of the wavenumber and continues to occur as

the wavenumber increases.

A similar near crossing occurs for the inflectional acoustic neutral modes and the vorticity

mode associated with the inviscid instability of a Blasius boundary layer for a compressible

fluid and was discussed by Cowley and Hall (1990) and Smith and Brown (1990). The latter

authors confirmed the conjecture of the former that, in the hypersonic limit, the modes are

separated by an exponentially small amount.

To discuss the near crossing of the two different types of mode described in Sections 3

and 4 for Mo, > 1 and in Sections 5 and 6 for a > 1 we follow Smith and Brown (1990)

and extend our WKB analysis of these prcvious sections.

Since the near crossing occurs for 0(1) Mach numbers as well as for Mo. > 1 it should

be possible to discuss the near crossing for both situations. The analvsis will be qimilar for

each case and therefore we attempt to minimize any repetition. We will first discuss the

situation for the hypersonic limit.
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7.1. The Hypersonic Limit

We again have that below the turning point V is given by (3.9). In the region of the

turning point V is given by (4.1) and (4.3) - (4.5) still hold. However, we replace (4.8) by

V 1  [ Eexp (_ t ) + Fexp (3 3)), (7.1)

for t > 1. We also retain the exponentially small term in (4.9) so that V in the region

between the turning point and the temperature adjustment layer is given by

V (-) f [coexp { -o(-H(ll))} ± doexp -- (-H(ql))dql]. (7.2)(- H) 1- 1, J "tJ

We already have (4.10) and matching the exponentially small terms between (7.1) and (7.2)

gives
E

E_2 = " (1 - f'(yt) 2), (7.3)

so o E F- = F. (7.4)

2d0  co

We now need to augment (4.16), the behavior as the temperature adjustment layer is ap-

proached from below, by a corresponding term in do so that

V2h( ,e2 coexpvJ F M +doexp -gJ+ +F e u

M.y1) ri M2 e~FM~
(7.5)

and then match this with the behavior of V in the temperature adjustment layer as z --+ co.

If we assume (4.19) has a solution

V=V, (7.6a)

(7.6b)

(7.6c)

and then perturb these equations by putting

V =1V-+ V, (7.7a)

= A +A, (7.7b)

= B13+ B, (7.7c)
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and insert (7.7) into (4.19) we get after linearising

-2 + -Tz I (,y- 1)he - 11 + -A2 1-(1 + (3 )he' )2 + Y 2

V 2AA(1 + (3 - 1)he') 2 + A- ( - 1)hez]

(7.8)

which can be integrated to give

= Vw(z), (7.9)

with

w(z) = 2AAJ1z ([I + (~1)hez,]2 jl V2dZ2) dz

+ (-q4) (- 1)h (1 2 J [1 + ( - 1)heZ2 ]2 dz2) dz (7.10)

C,~ [I [1 -(I'- )hez]

S[1 + (7 - 2 dzl + C2.

Using (4.22) we can calculate the constant C, that is necessary to ensure that V decays

exponentially as z -+ -oo. We can then use (4.20) to calculate the behavior of w(z) as

z --* c and if we choose C2 so that there is no additional contribution of order s2e -a to V

from f/ then we have that as z -- oo, V goes as

V [(-y - 1)hez]I [exp{-A(' - 1)he ' } +

f h A -l)h

(AGc 3  772) 2~ C4)h) exp{A(y - 1)he'}] (711

where

0C= V 2 dz - 'V2 dz, (7.12)

and
C4 = ezV 2  - 100  ezV2  dz. (7.13)

0 1+(-y - l)hez]2 [1 (-y-Ih;1

Miatching between (7.5) and (7.11) gives us that

co - A[AC3+ (bA( A- ) (C-)h-(

do 2 exp{- 2 .J+} (7.14)
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so we can get F/E from (7.4). Assuming F is small since we want to perturb the wall layer

modes (as well as the adjustment layer modes) for which F is zero, we get

7r F
(7.15)

and inserting this into (4.5) gives after some rearranging

MJ-(' -) IhC 47 - 2C3BJ
(7.16)

-r 2F exp{-2aM.2J+}

2C 3 B 2 - (-f - 1)hC 4  M'J_

Setting the two brackets equal to zero gives respectively the wall layer modes and the adjust-

ment layer modes. We can see from (7.16) that for finite M,, these modes do not intersect

but the distance between them is exponentially small. This explains the difficulties we had

in following a particular mode when we solved (2.16) - (2.17) numerically. A sketch is given

in Figure 14 of a pair of these near crossings with the continuous lines representing the situ-

ation at a finite Mach number. The dashed lines represent the picture given by (7.16) with

the exponentially small right-hand side ignored, i.e., when the adjustment layer modes have

become continuous in the limit Mc, -4 o.

7.2. M , 0(1)

As discussed in Section 5, in order to describe the near-linking of the wall layer modes

and the trapped layer modes for M,, - 0(1) we must consider the situation when the mode

number of the wall layer mode is large. Similarly to the case when MW > 1 we extend the

WKB analysis of Sections 5 and 6 for n > 1.

The solution in the wall layer for V is given by (5.12) with the solution below the position

rq = r* given by (5.14). The solution close to qi = r7* is given by (6.22) and so (6.26) and

(6.27) are still satisfied.

Now as r -- oo, from (6.22) we replace (6.23) by

V, [r-4 exp ( r) +/oexp (r ) . (7.17)

In the region q* < < we must retain the exponentially decaying term so instead of (6.16)
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we have

v(7) (Q(77))-'T(71) coexp nao + a, - ) f Qdji + ! J
+±O1- xp - (i0 + a ) Q d77, -- I j T2Q dYl1

(7.18)

where ho is a constant. Matching this solution as * -- r* with (7.17) gives (6.24) as well as

k - ho (7.19)
21o co"

Following (6.19), from (7.18) as q -*//for n large

V ". 2 ani(Q"(I)))-iT(]) {eolr-A"-(2Q ())- exp 4+ aon + a, - 13 + 14

+h01T/A-(exp - aon + a, - 13 1

(7.20)

Now we make the transformation (6.5) and perturb the solution in the trapped layer tor

large n where a is given by (5.10). Thus we write

1
3 =/3o + ( / ) +..., (7.21)

ao n

and

V = Vo + V*, (7.22)

where 03* and V* are small perturbations and Vo satisfies (6.8). Then if we substitute (7.21)

and (7.22) into (2.16) and linearize about the perturbed quantities we find that V" satisfies

d2V* -Q"( )V !~v. 2 _ 2,3*
dV* 2 _ ( )) - -2o (T(i)))2 V (7.23)

We wish to determine the behavior of V = V; + V* as -+ -w-. We want V*()) to

decay as -- oc so that the disturbance does not propagate outside the boundary layer.

The solution of (7.23) is

V*( = 'I'()V 0(), (7.24)

where qf( ) is given by

2X" fo 2) D 2 doi
() (T')) Jo (V( 1 0((')2d D , Jo (v 0( ,)) + D2. (7.25)
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Using the behavior of Vo as - -- -o±o given by (6.15) and (6.14) we can determine the values

of the constants D1 and D2 . Then from (6.15), since V* must decay for large fj we find

D 2 =0 ((A, Tfl) 2d " (7.26)
/30

For ij --- -oc we choose D2 to cancel the constant terms. Thus, from (6.14) we find that

D (j) -- DajT112" exp(T2/2), (7.27)

as Tj- -cc where

D3= -(2Q"(i)) - 1 [2(T())) 2 (U(A,-i))2dq(2Q"(i)-4 + d 2 (7.28)

Thus from (7.26), (7.28) is

D3 = 4o (2Q"( ))-2(T( )))2I1, (7.29a)

where

15 = j(U(A, ,))dT. (7.29b)

Thus, from (7.22), (7.24), (7.27), and (6.14), the behavior of V as r) --+ -x, is given by

v(7) dl(-1)-x-[- 2- exp(- /4) + D31 l"-i exp( 2 /4)]. (7.30)

The WKB solution below the trapped layer must match with (7.30) a.3 -*+ -00. Thus

matching (7.20) and (7.30) gives
.O (2__L)) 3 1 3 1,.( . 1

exp[-2(nao + a, - -3 2.ho D3 0

Thus, from (7.19) we have lo/ko. The solution for V described above is also a perturbation

of the wall layer solution so we must have from (6.22) that lo is small. Then we have

7r 1002 10 (7.32)

2 ko

Substituting this in (6.27) gives

1 7 10
,(1- -(1, + 12)) +naoI, -0 - - (733)

2a0  I 0  7.3

Using (7.19) and (7.31) we can rearrange (7.33) to give

O + - - naol, (2Q"(7))- I ,x-[-2(nao + a, - 1321
C1 4 -- (7.34)= 11 - o(I + 12) 2D:3(1 - oI + 12))
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Now from (5.11)

_I o (7.35)
2r 8ra 2 7

Substituting the expression for a, from (7.34) into (7.35) and rearranging gives

I1
a0 1 01 +7r/4 -naoI 3 _

IT2 I, - (I + I2) - aon
(7.3(6)

(2 exp -2 nao + a, - 13-214]

82a2 n(T( r)) 2 I(I1 -) +0 5 (1 2a (I,1+ 2))

If we set tile factors ol the left-hand side of (7.36) to zero in turn we see that they

describe the growth rates of the wall layer modes and tile trapped layer modes respectively.

Thus from (7.36) we see that for large n the wall layer modes and the trapped layer modes

are separated by an exponentially small amount. This explains the apparent crossings of

the growth rate curves obtained from the numerical results of Section 2. Thus the curve of

growth rate as a function of a where the modes are very close is also described by Figure 1-1

as for the case when M, > 1.

8. Discussion

The main result of the present paper is that we are able to investigate the linear growth

rate of G6rtler vortices for 0(1) wavenumbers. This was achieved by considering the inviscid

limit of large G6rtler number for vortices having 0(G2) growth rates. In this limit the

growth of Gdrtler vortices is governed by parallel flow effects. Since for incompressible flows,

or compressible flows with 0(1) Mach numbers, the spatial growth of viscous G6rtler vortices

is governed by non-parallel effects previous investigators were forced to consider the limit

of large wavenumber, where as a result of boundary layer growth, non-parallel effects are

unimportant (see Hall 1982a and Hall and Malik 1987). Ho-wever, Hall and Fu (1989) show

that in the hypersonic limit the growth of G6rtler vortices with wavelength 0((2 log 12 )- )

is governed by a parallel flow theory.

We have shown that in the inviscid limit, in a compressible boundary layer over an infinite

cylinder, there are two types of growth rate modes possible for G6rtler vortices.

In the hypersonic limit we have firstly the type of mode we call wall layer modes. These

are present in the incompressible case and their growth rates continue to rise as the wavenum-

ber a -+ oc. Secon-Ily, we have the adjustment layer modes which have their eigenfuict ions

concentrated in the temperature adjustment layer away from the wall. The growth rate of

these modes tends to a constant value as a --+ 0c.
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We have also considered the limit a --+ oo for 0(1) Mach numbers to describe the wall
layer modes and the trapped layer modes (equivalent to the temperature adjustment layer

modes when Alo > 1). The wall layer modes are confined to a thin layer of thickness 0(a - 1)

and have growth rates proportional to al for moderate mode number n and tending to a

constant value for large n. These results are the extension for compressible flows of the

incompressible case described in Section 5 of Denier, Hall, and Seddougui (1991), hereafter

referred to as DIIS. For the compressible case we have an additional mode concentrated in

a layer of thickness 0(a-2) away from the wall. This is the so-called "trapped layer mode,"

which has growth rates tending to a constant value as a --+ o0.

The asymptotic results described for AI, > 1 and also for A1I, -,- 0(1) are shown to

agree very well with the numerical solutions described in Section 2. We find that as the

Mach number is increased from zero the wall layer modes start to deform until at a critical

Mach number we see the appearance of adjustment layer modes.

These modes are not present in an incompressible fluid. However, the growth rate of these

mo, ,; tends to a constant value as the wavenumber increases while that of the wall layer

modes (also present in incompressible flows) continues to increase. Hence, we anticipate that

the trapped layer modes will not be as important as the wall layer modes for large values of

the wavenumber.

The situation here is similar to the case of inviscid disturbances to compressible flow over

a flat plate. In this instance the vorticity mode does not appear until AUl exceeds a value

approximately given by 2.2. However, in contrast to the present problem, the vorticity mode

has larger growth rates than the acoustic modes when A1 > 1.

From the analysis for a > 1 for Chapman constant C = 1 and unit Prandtl number

for an adiabatic boundary condition on the basic temperature we find that this critical

Mach number is 3.564. For Mach numbers of this range, the adjustment layer modes are

discontinuous with each mode solution of (2.16), apart from the exact solution, contributing

a part to the adjustment layer modes as it passes through the relevant positions.

We showed in Section 7.1 that for M, >> 1 the wall layer solutions and temperature

adjustment layer solutions of (2.16) come w-ithin an exponentially small distance of one

another and in the hypersonic limit the adjustment layer modes become continuous. In

Section 7.2 we showed that this is also the situation in the limit a -4 00 for M,, 0(1) when

tile mode number of the wall layer modes is large.

The Chapman viscosity law has been assumred in the present analysis, and results de-

scribed for mnit Chapman constant and unit Prandtl number for simplicity. There is no

great difliculty in obtaining results for more realistic values of C and Prandtl number and it

is expected that the effect of this on the asymptotics will be small.
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However, in the hypersonic limit the Chapman viscosity law does not gi,,, a realistic
description of the viscosity of the fluid. Thus, of interest would be the results when the

more accurate relation Sutherland's law is used to describe the temperature dependence
of the fluid viscosity. The results of Fu, Hall, and Blackaby (1990) who investigated the
G6rtler instability in the hypersonic limit for Sutherland's law showed that the results were
significantly different from those for Chapman's law. In particular the structure of the
temperature adjustment layer is altered, now having 0(1) thickness. See also, Blackaby,

Cowley, and Hall (1990) who investigated hypersonic flows over a flat plate using Sutherland's
law. Thus, it is to be expected that significant changes to the results presented in this paper
would exist if Sutherland's viscosity law was used in place of Chapman's law.

The solutions of the equations governing the instability of G6rtler vortices in the inviscid
limit do not predict a fastest growing mode since the growth rates of the wall layer modes
tend to infinity when a --+ c. From Section 5, in the high wavenumber limit we see that the
wall layer modes have growth rates of 0(G2a2). We can extend the work of DHS to describe

the fastest growing mode in the limit of large G6rtler number for a compressible flow with

Mo,-, -0(1). First we consider the structure of a viscous mode close to the right-hand branch
of the neutral curve with a = A*Gi. This mode exists in a layer of thickness 0(a-1) centered
around some non-zero value of ry. Initially A* is 0(1) but we are interested in the limit A* -+ 0.

We note that the problem where A* --+ oo corresponds to the work of Hall and Malik (1989).
The analysis is very similar to that described by DHS for the corresponding problem for an
incompressible problem so the details will not be repeated here. As for the inviscid modes

the growth rates are 0(G2). The first approximation to the growth rate 13 is determined
from the following condition

+_ !TAiiy_ + +~J (~~2 0, (8.1)
T T T2 T ^*2T

and /) is a maximum at y = yc where (8.1) is satisfied. Here 7- is the viscosity of the

fluid and F* is the Prandtl number. In the incompressible limit (8.1) reduces to precisely
the expression given by DHS for the corresponding incompressible problem. We consider

solutions of (8.1.) when the basic flow is given by the compressible Blasius flow described by
(2.4 - 7) for unit Chapman constant and Prandtl number. Then the situation of A* = 0 is

precisely (6.3), determining the growth rate of the trapped layer mode. Thus, for ) = 0
there will not be a solution of (8.1) for values of M,, below a certain value. However, for
A* > 0 we find that solutions of (8.') exist for all values of M,,. We are not concerned with
the details of the solution of (8.1) here but further particulars may be obtained, on request,

from tihe second author. We are solely concerned with the behavior of the solution of (8.1)
for A --* 0 for the basic flow described in Section 2. The numerical solutions of (8.1) show
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that rq, becomes small for A* - 0 and closer inspection of (8.1) in this limit reveals that

7', " ' and A" , A*-. Thus, in the limit A* -- 0 the growth rates of the viscous modes are

0(G'(aG )) Thus, as a decreases the viscous right-hand branch modes become more
unstable.

The above discussion suggests that there exists an intermediate region where the viscous

mode described above and the inviscid mode of Section 6 overlap. This will occur when
their growth rates are the same size. We find that this is the case when a - Gs with the

growth rates of 0(G1). The vortices in this case will be confined to a wall layer of depth of

0(G-5). We note that this situation is identical to that described by DHS for the fastest

growing mode in an incompressible flow. It turns out that the effects of compressibility

may be scaled out with the result that the eigenvalue problem determining the growth rate

of the fastest growing mode is identical to that solved by DHS. Thus we do not present
the system of equations here but point out that full details of the compressible problem

may be obtained from the second author. Consequently, the results of DHS also describe
the solution for a compressible fluid. We have that each unstable mode has its maximum

growth rate occurring at a finite value of A*. DHS showed that the most unstable mode

corresponds to A = 0.476, = 0.312 where a = K aT,7AGE and the growth rate of the

fastest growing mode is given by G-I'[-a'Tw, _3. The results described above show that

for a compressible fluid, as well as an incompressible fluid, the most unstable linear G6rtler

vortex at high Gdrtler numbers is viscous with wavenumber of 0(G5), rather than O(G4),

which is appropriate to the unstable modes close to the right-hand branch of the neutral

curve. An important result is that the most unstable modes occur close to the wall. This
suggests that significant coupling coefficients will be possible in the receptivity problem for

the most unstable modes. This was shown to be the case for the incompressible problem by

DHS and identical r( ults for a compressible fluid may be inferred simply from the results of

DHS. Of interest would be the behavior of the fastest growing mode in the hypersonic limit.
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Figure 1. Solutions of the eigenvalue problem (2.16) - (2.17) for a Mach number of 2.
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Figure 2. Solutions of the eigenvalue problem (2.16) - (2.17) for a Mach mber of 3.25.
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Figure 3. Solutions of the eigenvalue problem (2.16) - (2.17) for a Mach number of 5.
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Figure 4a. Eigenfunction of the fourth mode for a Mach number of 5 and a = 0.2.
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Figure 4b. Eigenfunction of the fourth mode for a Mach number of 5 and a =1.1.
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Figure 4c. Eigenfunction of the fourth mode for a Mach number of 5 and a =1.25.

32



1.0

.8

.6

.4

.2
V

0

-.2

-.4

-.6

0 I 2 3 4 5 6
TI

Figure 4d. Eigenfunction of the fourth mode for a Mach number of 5 and a =1.35.
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Figure 4e. Eigenfunction of the fourth mode for a Mach number of 5 and a =2.5.
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Figure 5. Solutions of the eigenvalue problem (2.16) - (2.17) for a Mach number of 8.
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Figure 6. The first seven wall layer modes given by (3.17) for a Mach number of 8

(dashed lines) superimposed on Figure 5.
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Figure 7. The first three adjustment layer modes given by (4.19) for a Mach number of 8

(dashed lines) superimposed on Figure 5.
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Figure 8. The growth rate / as a function of a for M,, = 5: - numerical solution of (2.16);

- - - asymptotic solution from (5.4).
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Figure 11. The position 0 of the trapped layer modes for a > 1 as a function of MA! for an
adiabatic fluid and also for an isothermal fluid with T, , 0.5, 1,2, 4.8.
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Figure 12. The neutral growth rate 3
0 from (6.3) for the trapped layer modes as a function

of Al, for an adiabatic fluid and also for an isothermal fluid with T,, = 0.5,1,2,4.8.
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Figure 13. The growth rate j3 as a function of a for Al, 5: - numerical solution of (2.16);

- - - asymptotic solution from (6.6).
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Figure 14. Sketch of the near crossing of the wall layer and adjustment layer modes. The con-

tinuous curves represent the finite Mach number situation and the dashed lines the situation

in the asymptotic limit Af, -- -c.
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